Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Rep ; 12(1): 13392, 2022 08 04.
Article in English | MEDLINE | ID: covidwho-1972655

ABSTRACT

Diagnosis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has primarily been achieved using reverse transcriptase polymerase chain reaction (RT-PCR) for acute infection, and serology for prior infection. Assay with RT-PCR provides data on presence or absence of viral RNA, with no information on virus replication competence, infectivity, or virus characterisation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is typically not used in clinical virology, despite its potential to provide supplemental data about the presence of viral proteins and thus the potential for replication-competent, transmissible virus. Using the SARS-CoV-2 as a model virus, we developed a fast 'bottom-up' proteomics workflow for discovery of target virus peptides using 'serum-free' culture conditions, providing high coverage of viral proteins without the need for protein or peptide fractionation techniques. This workflow was then applied to Coronaviruses OC43 and 229E, Influenza A/H1N1 and H3N2, Influenza B, and Respiratory Syncytial Viruses A and B. Finally, we created an LC-MS/MS method for targeted detection of the eight-virus panel in clinical specimens, successfully detecting peptides from the SARS-CoV-2 ORF9B and nucleoprotein in RT-PCR positive samples. The method provides specific detection of respiratory viruses from clinical samples containing moderate viral loads and is an important further step to the use of LC-MS/MS in diagnosis of viral infection.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , COVID-19/diagnosis , Chromatography, Liquid , Humans , Influenza A Virus, H3N2 Subtype , SARS-CoV-2/genetics , Tandem Mass Spectrometry , Viral Proteins
2.
Clin Chem Lab Med ; 59(9): 1507-1515, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1206212

ABSTRACT

With an almost unremittent progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all around the world, there is a compelling need to introduce rapid, reliable, and high-throughput testing to allow appropriate clinical management and/or timely isolation of infected individuals. Although nucleic acid amplification testing (NAAT) remains the gold standard for detecting and theoretically quantifying SARS-CoV-2 mRNA in various specimen types, antigen assays may be considered a suitable alternative, under specific circumstances. Rapid antigen tests are meant to detect viral antigen proteins in biological specimens (e.g. nasal, nasopharyngeal, saliva), to indicate current SARS-CoV-2 infection. The available assay methodology includes rapid chromatographic immunoassays, used at the point-of-care, which carries some advantages and drawbacks compared to more conventional, instrumentation-based, laboratory immunoassays. Therefore, this document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 aims to summarize available data on the performance of currently available SARS-CoV-2 antigen rapid detection tests (Ag-RDTs), providing interim guidance on clinical indications and target populations, assay selection, and evaluation, test interpretation and limitations, as well as on pre-analytical considerations. This document is hence mainly aimed to assist laboratory and regulated health professionals in selecting, validating, and implementing regulatory approved Ag-RDTs.


Subject(s)
Antigens, Viral/immunology , COVID-19/diagnosis , Immunoassay/standards , Point-of-Care Testing/standards , Practice Guidelines as Topic/standards , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Asymptomatic Infections/classification , COVID-19/immunology , COVID-19/virology , Humans
5.
Clin Chem Lab Med ; 58(7): 1053-1062, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-937252

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the third coronavirus outbreak that has emerged in the past 20 years, after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). One important aspect, highlighted by many global health organizations, is that this novel coronavirus outbreak may be especially hazardous to healthcare personnel, including laboratory professionals. Therefore, the aim of this document, prepared by the COVID-19 taskforce of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), is to provide a set of recommendations, adapted from official documents of international and national health agencies, on biosafety measures for routine clinical chemistry laboratories that operate at biosafety levels 1 (BSL-1; work with agents posing minimal threat to laboratory workers) and 2 (BSL-2; work with agents associated with human disease which pose moderate hazard). We believe that the interim measures proposed in this document for best practice will help minimazing the risk of developing COVID-19 while working in clinical laboratories.


Subject(s)
Containment of Biohazards/methods , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Betacoronavirus/pathogenicity , COVID-19 , Clinical Laboratory Services , Coronavirus/pathogenicity , Disease Outbreaks/prevention & control , Humans , Laboratories , Laboratory Personnel , SARS-CoV-2
7.
Clin Chem Lab Med ; 58(12): 2009-2016, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-835982

ABSTRACT

Routine biochemical and hematological tests have been reported to be useful in the stratification and prognostication of pediatric and adult patients with diagnosed coronavirus disease (COVID-19), correlating with poor outcomes such as the need for mechanical ventilation or intensive care, progression to multisystem organ failure, and/or death. While these tests are already well established in most clinical laboratories, there is still debate regarding their clinical value in the management of COVID-19, particularly in pediatrics, as well as the value of composite clinical risk scores in COVID-19 prognostication. This document by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications for testing, (B) recommendations for test selection and interpretation, (C) considerations in test interpretation, and (D) current limitations of biochemical/hematological monitoring of COVID-19 patients. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide, underscoring the contribution of biochemical and hematological testing to our collective pandemic response.


Subject(s)
Coronavirus Infections/metabolism , Hematologic Tests , International Agencies , Pneumonia, Viral/metabolism , Practice Guidelines as Topic , Adult , Biomarkers/blood , COVID-19 , Cardiovascular Diseases/complications , Child , Coronavirus Infections/blood , Coronavirus Infections/complications , Female , Humans , Male , Multiple Organ Failure/complications , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications
8.
Clin Chem Lab Med ; 58(12): 2001-2008, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-835981

ABSTRACT

Serological testing for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as an important component of the clinical management of patients with coronavirus disease 2019 (COVID-19) as well as the epidemiological assessment of SARS-CoV-2 exposure worldwide. In addition to molecular testing for the detection of SARS-CoV-2 infection, clinical laboratories have also needed to increase testing capacity to include serological evaluation of patients with suspected or known COVID-19. While regulatory approved serological immunoassays are now widely available from diagnostic manufacturers globally, there is significant debate regarding the clinical utility of these tests, as well as their clinical and analytical performance requirements prior to application. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay evaluation, and (D) test interpretation and limitations for serological testing of antibodies against SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories in the selection, verification, and implementation of serological assays and are of the utmost importance as we expand our pandemic response from initial case tracing and containment to mitigation strategies to minimize resurgence and further morbidity and mortality.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , International Agencies , Practice Guidelines as Topic , Serologic Tests/methods , Antibodies, Viral/immunology , Humans , SARS-CoV-2
9.
Clin Chem Lab Med ; 58(12): 1993-2000, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-835980

ABSTRACT

The diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection globally has relied extensively on molecular testing, contributing vitally to case identification, isolation, contact tracing, and rationalization of infection control measures during the coronavirus disease 2019 (COVID-19) pandemic. Clinical laboratories have thus needed to verify newly developed molecular tests and increase testing capacity at an unprecedented rate. As the COVID-19 pandemic continues to pose a global health threat, laboratories continue to encounter challenges in the selection, verification, and interpretation of these tests. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay verification, and (D) test interpretation and limitations for molecular testing of SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide and highlight the continued importance of laboratory medicine in our collective pandemic response.


Subject(s)
Coronavirus Infections/diagnosis , International Agencies , Molecular Diagnostic Techniques , Pneumonia, Viral/diagnosis , Practice Guidelines as Topic , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL